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The cold two-stream instability has been examined within the context of the one-dimen-
sional Vlasov-Poisson model for three simulation methods. Two of the methods treat a con-
tinuum of particles; the third is the particle-in-cell method. The onset of noise in the
simulations éccurred near the time when the beams crossed or nearly crossed in the phase
space, indicating a violation of Liousville’s theorem or strong sensitivity of particle trajectories
to initial conditions in the vicinity of the point of near crossing. Details of the underlying
Hamiltonian structure of the particle dynamics appear to be important in achieving accurate
plasma simulations.  © 1987 Academic Press, Inc.

I. INTRODUCTION

Numerical simulation of collisionless plasmas by means of discrete-particle
Lagrangian techniques is a useful tool in plasma physics. Rapid development of the
subject began during the latter years of the 1960s and continued for five or six
years. Following that, until several years ago, emphasis shifted from development of
techniques to specific numerical applications. Although use of the science and art of
numerical plasma simulation has contributed greatly to the present-day
understanding and application of plasma physics, plasma simulation techniques still
have shortcomings that prohibit application to some important and interesting
problems.

During the early years, we sought better techniques for collisionless plasma
simulation. However, our attempts to improve simulation techniques significantly
were unsuccessful and we relinquished our efforts in 1973. During our work, we
observed a correlation between the onset of noise in simulations and crossing or
near crossing of particle trajectories in phase space. We are reporting on this obser-
vation now, despite the long delay, because it is relevant to some current ideas for
improving plasma simulation methods by using Hamiltonian approximation
methods for the particle trajectories. A discussion of one such idea is presented in
Ref. [1].

Our work dealt exclusively with the one-dimensional, single-species Vlasov—
Poisson system. Other numerical experiments, with various implementations of par-
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ticle-in-cell simulation, have indicated that modifying the method of solving the
Poisson equation will not lead to a significant reduction of the observed noise in
the solution that limits the class of problems which can be studied with the particle-
in-cell method [2-4]. Particle-in-cell methods may be viewed as limiting cases of
Lagrangian formulations based on a continuum of particles; the limit is that the
continuum is replaced by a finite set of discrete particles. The notion of a con-
tinuum of particles underlies the Vlasov equation, and it can be argued on an a
priori basis that the noise in particle-in-cell simulations is the result of replacing the
continuum with a relatively small number of discrete particles. For that reason we
tried certain approximation schemes that are based on a continuum of particles
instead of discrete particles. In Lagrangian representations, the fundamental
function that describes the particles is the particle position as a function of initial
position, initial velocity and time. A particular approximation of that function was
proposed by Lewis [5] for the case in which there were initially N cold beams. For
each initial velocity, the particle position is approximated by the initial position
plus a truncated Fourier series in the initial position with time-dependent coef-
ficients; and the electric potential is approximated by a Fourier series in position.
This results in a system of ordinary differential equations in time whose coefficients
involve complicated integrals over initial position and velocity. We tried this
scheme with the result that too much computer time and storage were required in
order to obtain a numerical solution over a sufficiently large number of plasma
periods.

In order to test the value of expanding the particle position in a Fourier series in
initial position, we modified this scheme in a way that allowed numerical results to
be obtained much more easily. The most important modification was to solve the
Poisson equation by a modified particle-in-cell method, while retaining the Fourier
series representation of the particle position. Computations with the revised scheme
demonstrated that it was not preferable to particle-in-cell methods; noise occurred
with this scheme just as noise occurs in particle-in-cell solutions. However, an
interesting correlation with the onset of the noise was observed in these com-
putations: the onset of noise was accompanied by an obvious breakdown of
measure preservation in phase space as manifested by actual crossing of phase-
space trajectories. Crossing or near crossing turned out to be central to our obser-
vation of noise in all of our computations, including a variety of particle-in-cell
simulations.

Another continuum method which we tried was characterized by a piecewise
linear approximation of particle position as a function of initial position and by an
exact, analytic solution of the Poisson equation. Again noise occurred whose onset
was accompanied by crossing of phase-space trajectories.

We also performed particle-in-cell computations in our search for the basic cause
of the noise in the electric field. The Poisson equation was solved with the standard
linear interpolation procedure for the charge density. For moving the particles we
tried a standard leapfrog algorithm as well as a fourth-order Runge-Kutta method.
The number of particles, the number of cells and the time step were varied. We



ACCURATE PLASMA SIMULATION 269

observed that the onset of noise in these calculations was accompanied by con-
ditions which were at least very close to crossing of trajectories in phase space.
Even if the trajectories did not actually cross, there was a strong sensitivity of tra-
jectories to initial conditions in the vicinity of the place where they nearly crossed.
The only thing which we found effective in delaying crossing or near-crossing of tra-
jectories, and the concommitant onset of noise, was improvement of the accuracy of
integrating the particle equations of motion, either by using the fourth-order
Runge-Kutta scheme instead of the leapfrog algorithm, or by decreasing the time
step.

We believe that we have compelling evidence that the onset of noise in all
methods of Lagrangian numerical simulation of the Vlasov—Poisson system is
correlated with inaccuracies in the particle trajectories in vicinities where there is
strong sensitivity to initial conditions. This effect has also been discussed by Dilber,
Walsh and Denavit in terms of Kolmogorov-Sinai entropy [6]. We suggest that a
major advance in techniques of numerical plasma simulation could be achieved by
developing a practical simulation method in which certain features of the underly-
ing Hamiltonian particle dynamics were treated more accurately. A practical techni-
que for representing the particle data by a continuum in such a way that phase-
space measure be preserved locally may lead to such an advance. In this way, the
already powerful tool of numerical plasma simulation would become even more
valuable.

In Section Il we review the Lagrangian formulation of the Vlasov-Poisson
system. We describe our various approximation schemes in Section IIl. Numerical
results and our conclusions are presented in Sections IV and V, respectively.

II. LAGRANGIAN FORMULATION

We consider the simplest Vlasov—Maxwell system. All quantities are assumed to
vary spatially in only one dimension, x, and their dependence on x is assumed to be
periodic with period L. In addition, the plasma is assumed to be unmagnetized so
that only electrostatic interactions need be considered.

The equations describing such a system are the one-dimensional Vlasov equation

%H%+%E(x,z)g—{)=0, (1)
with initial data
S(x,0,0)= folx, v), (2)
and the Poisson equation
¢

—=4nq[n0——J‘f(x,v, t)dv:|, (3)
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where E(x, t)= —0/0x ¢(x, t), —n,q is a uniform neutralizing background charge
density and ¢ satisfies the boundary condition

#(0, 1) = ¢(L, z)ér E(x, 1) dx=0. (4)

o

The approximation schemes that we consider here as well as all conventional
plasma simulation methods are Lagrangian in nature. That is, the solution of the
characteristic equations of (1), which are the equations of motion of a particle of
mass m and charge g moving in the electric field E(x,t), is approximated
numerically for some set of initial conditions. The particle distribution function,
f(x, v, 1), is constructed from the set of particle trajectories and the electric poten-
tial is determined self-consistently by solving the Poisson equation (3). Let
X(x', v, t) and V(x', v', t) be, respectively, the position and velocity of a particle at
time ¢ whose position and velocity at time O are x’ and v’, respectively. These
functions are the solution of the particle equations of motion

X(x', v, )= V(x', v, 1), Vix', v, t)=% E[X(x', v, 1), 1] (5)
with the initial data

X(x',v,0)=x, Vix',v',0)=1, (6)
where a dot over a quantity denotes partial differentiation with respect to z. The
transformation from (x’, v') to (x, v) given by

x=X(x', v, 1), v=V(x, v, 1) (7)
can always be inverted to express x’ and v’ in terms of x, v and 1. We write the
inverse as

X, = XO('xa D, t)a U’ - VO(X, v, t) (8)

The solution of the Vlasov equation (1) with the initial data (2) can be expressed in
terms of the functions X, and V, as

f(X, U,t):fo[XO(X, v, t)a VO(xa v, t)] (9)

~ The Vlasov-Maxwell equations for a collisionless plasma can always be con-
sidered as a complete Hamiltonian system for the electromagnetic potentials and
the functions that give the position of a particle moving in the electromagnetic field
as a function of initial position, initial velocity and time [5]. For the Vlasov—



ACCURATE PLASMA SIMULATION 271

Poisson system that we are considering here, but allowing the possibility that the
system be nonperiodic, the Lagrangian is

2
1 [04\2
+ [ ax {g (%) + nogd(x, z)}. (10)

In general, the integrations over x’ and v’ extend over the full ranges of initial
position and velocity; the integration over x extends over the domain of definition
of the problem. For a periodic system, the integrations over x’ and x may be
restricted to a single period. Appropriate boundary conditions on the potential
must be specified at the endpoints.

It is possible to express ¢(x, #) explicitly in terms of X(x’, v’, t) and fy(x', v'). For
an aperiodic system, the result is

P(x, 1)=do+ ¢, x

L =j dx' J. dv’ fo(x', v") {l mX(x', v, 1)} — gp[ X(x', V', 1), t]}

4 1 L
+— [ ax' dv o', v) {5 [x = X', v, )] = 5 |x = X(x', v, z)l}, (11)

where ¢, and ¢, are constants that are determined by the boundary conditions and
L is the length of the system. That (11) solves the Poisson equation depends on the
formula

&1
B3 M=00) (12)

For a periodic system the result is

#(x, 1) = dq +4% j dx’ dv’ fo(x', v')

L
3 L= X 0 )]s 125 L= X0, Daeach (13)

where ¢, is a constant, L is the periodicity length of the system and the integral
over x" is from O to L. The function y_,.4, is a modulo function defined by

ymoszy“nLa (14)
where n is an integer defined by

nL<y<(n+1)L. (14a)
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This function is clearly periodic with period L and satisfies the identity

1 , L 1, L
E[ymodL]~_5ymodL=§y _Elyl’ ‘ﬂLgygL (15)
Therefore, the formula
d (1 , L
515 Dot =5 s = 1= L8415) (16)
holds, where

o.(y)=6d(y)  for

STl

SAN

o~

(17)
and is periodically extended for all other values of y. That (13) solves the Poisson
equation is a result of formula (16).

The particle equations of motion (5) can be derived from a particle Lagrangian,

L,, which is that part of the complete Lagrangian (10) that depends on the map-
ping function X. By substituting the potential given by (13) into L

»» WE €xpress L,
for the periodic case in terms of the mapping function alone, without explicit
reference to the potential:

L= | dx’dv’ fold', o)) X< 0002 =gy [ d’ d folx', v

2 2
- Zq J dx' dv’ dx” dv” fo(x', v") fo(x", v”)

X { [[X(x,a Ul’ [) - X(xu’ U”’ t)]modL]z - L[X(X/, Ula f) - X(x”* UH, t)]mod[‘}'
The last term can be evaluated as

(18)

2ng? J dx' dv' dx" dv” fo(x’, ") folx”, v )X (X', v, t) — X(x", 0", 1)) hod 2.
=ng* j dx' dv' dx” dv” fo(x', 0"} fo(x", ")
X {[X(x/> l)/, t)_X( H‘! U”’ t)]mod[‘ + [X(X”, UH: t) - X(x,’ U/a t):]modL}

=nq’L f dx' dv' dx" dv" fo(x', v') fo(x", v"),

where we have used the identity

(19)

(_y)modL + (y)modL =L.

(20)
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Neither this term in L, nor the term proportional to ¢, depends on the mapping
function X. Therefore, both terms can be deleted from L, to give

m

L =3 J dx' dv' fiy(x', v') X(x', v, 1)? (21)

r

2 2
‘-% j dx' dv’ dx" dv” fo(x's ') fo(x", 0 [ [X(X 0, ) = X(x", 0" )1 moar 1>

III. APPROXIMATION SCHEMES

We have examined the cold two-stream instability with three approximation
schemes. Two of them, which we denote by Fourier-PIC and piecewise linear,
describe a continuum of particles with a finite number of time-dependent
parameters. The third scheme is a PIC (particle-in-cell) method. In our application
of the PIC scheme, which describes a finite number of discrete particles, we tried
two algorithms for advancing the particles in time.

The Fourier-PIC scheme is a modification of a scheme proposed by Lewis and
Melendez. They represented the mapping function X(x', v', ¢} for each beam as x'
plus a truncated Fourier series in x'; and they represented the electric potential as a
truncated Fourier series in position x. The equations for advancing the coefficients
of these Fourier series in time where derived from Hamilton’s principle. As
described in Section V of Ref. [5], these equations involve time-dependent quan-
tities that are Fourier coefficients in the Fourier series expansion of a complex
exponential of a truncated Fourier series. As the two-stream instability develops,
these coefficients become increasingly difficult to evaluate and a special numerical
method was developed for their evaluation [7]. Sufficiently far in the evolution of
the instability, even this method is ineffective, but there was evidence that the
integrals could be evaluated effectively by the method of stationary phase from that
time on. A computer code for evaluation by the method of stationary phase was
written. However, the result was that the method described in Ref. [7] for
evaluating the integrals was not effective for a long enough time such that the
method of stationary phase would be applicable thereafter. Because of this inter-
mediate period during the evolution, when the task of evaluating certain time-
dependent quantities in the differential equations was insurmountable, the
approximation scheme proposed by Lewis and Melendez was abandoned as being
impractical.

The Fourier-PIC scheme used here retains the representation of the mapping
function X(x', v’, t) for each beam as x’ plus a truncated Fourier series in x’,

N 2 ’ 2 t
X(x\ 4V, 1)=x + V{égi)(t)+ y [ (£)(1) sin “Z" +805)(1) cos ”Zx ]} (22)

n=1
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where the initial conditions are

ys£0)=8{*)(0)=0, (23a)
PEN0Y=0*1(0)=0, n#0, (23b)
86£%0)=1. (23c)

This ansatz describes two continuous beams, whose initial velocities are +V, in
terms of the 2(2N + 1) time-dependent parameters y(*(¢) and 6{*(¢). Equations for
advancing these time-dependent parameters can be derived from the variation of
the action associated with the Lagrangian (10). They are the same as those
obtained by applying a Galerkin method to the equation of motion for each beam,

X, 4V, ) =L Elx', 4V, 1), 1]. (24)
m
Specifically, the equation of motion for each beam is multiplied by the spatial initial

distribution function for that beam and by one of the (2N + 1) expansion functions

. 2nnx' 2nnx’
1, sin 7 cos 7 ;

then the resulting equation is integrated with respect to x’ from 0 to L. The
2(2N + 1) equations obtained by repeating this for each beam and for each expan-
sion function are a system of second-order differential equations in time.

In contrast to the method of Lewis and Melendez (Section V of Ref. [5]), we
determine the electric field for the Fourier—PIC scheme by a particle-in-cell method
[8,9,5]. A set of equally spaced points in initial position is chosen for each beam
and the positions of the corresponding particles are calculated at time ¢ from (22).
The charge density at time ¢ is then calculated on a spatial mesh according to a
standard PIC method with a linear weighting for the assignment of the charge of a
particle to neighboring mesh points. The potential is determined by solving a finite-
difference approximation to Poisson’s equation with that charge density. In this
way, evaluation of the very difficult integrals confronted by Lewis and Melendez is
avoided and the computation time for determining the electric field is proportional
to the size of the spatial mesh on which Poisson’s equation is solved. The connec-
tion of this formulation to the Poisson equation obtained from the Lagrangian (10)
is the following. A piecewise linear expansion of the potential ¢ on a regular mesh
in x gives an integro-difference equation with the same difference operator that
occurs in the finite-difference approximation. If the integral over the initial phase
space is approximated by Euler’s rule, then the Fourier-PIC approximation for
Poisson’s equation is obtained.

The piecewise linear scheme was conceived as an alternative to the method of
Lewis and Melendez that perhaps would be practical. Like the method of Lewis
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and Melendez, the piecewise linear scheme is completely Hamiltonian. The ansatz
used in the piecewise linear scheme for the mapping function X(x', v', t) is

X(x, 2V, =x"+ i a = (1) g (x'), (25)

n=1

where the functions g,(x’) are a local basis for linear splines (“tent functions™) with
fixed nodes. The electric potential is represented exactly as an infinite Fourier series,

& 1

plx, )= Y Otn(t)\/57—r

The initial distribution function for each beam was chosen to be a piecewise linear
function of position.

The equations for the time-dependent parameters a'*’(¢) and «,(¢) that are
required by Hamilton’s principle [5] for the piecewise linear scheme involve only
integrals that can be performed analytically. The equations for the coefficients «,, ()
can be solved analytically, in analogy with (13), and the equations for the coef-
ficients a!*’(¢) can then be written without explicit reference to the potential, in
analogy with (21). In order to achieve this, it is convenient to use the formula

e, (26)

1 .1 72

3 (27)

Z ? e 25 (xmod2n)2_n(xmod2n)+
n#0

Although the integrals in the variational equations for the a{*’(¢) can be carried out
explicitly, there are many integrals and the equations are very complex. Because the
potential has been determined exactly for any given form of the mapping function
X(x', v, t), every point in the plasma is explicitly in interaction with every other
point. This is reflected in the fact that the computation time for solving the
variational equations is proportional to the square of the number of piecewise
linear basis functions used for representing the mapping functions for the two
beams. Also, there are serious problems in evaluating certain quantities in the
variational equations precisely enough when the slope of the mapping function for a
beam is the same in neighboring cells.

A version of the piecewise linear scheme was also worked out in which the
locations of the nodes for the mapping functions were allowed to vary in time. The
dynamical equations for the complete set of variables, consisting of the amplitudes
a'*)(r) and the locations, were derived from Hamilton’s principle. However, the
equations appeared to allow the nodes to move past one another, which must not
be tolerated because the mapping functions must be single-valued. Therefore, the
idea of variable nodes was abandoned in favor of (25).

Our third approximation scheme was a PIC method with standard linear
weighting for assigning particle charge to neighboring mesh points [8,9,5]. We
used two algorithms for advancing the particles. One was the usual leapfrog
algorithm; the other was a fourth-order Runge-Kutta scheme.
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IV. NUMERICAL RESULTS

The various approximation schemes described in Section III have been
implemented and applied to one-dimensional, electrostatic plasma simulation.
The simulation results presented in this section were all obtained for the same cold
two-stream instability problem. The initial plasma was two cold, counter-streaming
electron beams whose velocities are + V. The speed V is given by

V07
pr_ 2z’

(28)

where L is the periodicity length of the system, w2=4nn,q°/m, and n, is the
equilibrium plasma number density. If we define a Debye length in terms of ¥ by

N
ip=—, (29)

p
then the periodicity length is related to the Debye length by

2n

L=z . (30)

The condition for instability of a density perturbation whose spatial variation is
proportional to exp[i(2rnkx/L)] is

2 ”Z V o, (31)
Therefore, only a perturbation with the longest wavelength allowed in the system
(x = 1) was unstable in our simulations. For the Fourier-PIC and PIC simulations,
64 cells were used for Poisson’s equation. A range of time steps was used, a typical
time step being given by w, 6¢/(2n) = 0.04. For the PIC simulations, the usual ran-
dom initial loading of particles was modified to be regular in velocity space in order
to achieve two completely cold beams initially.

Results with the Fourier-PIC scheme are shown in Figs. 1-3. The mapping
function for one beam is shown in Fig. la at a time just after the maximum in the
electric field energy has been reached. The phase-space plot at the same time for
both beams is shown in Fig. 1b. The points plotted correspond to a set of particles
in each beam that were equally spaced initially. Note that the two beams have
nearly crossed in the phase space. The mapping function and phase-space plot are
shown at a slightly later time in Figs. 2a and b; and they are shown at a still later
time in Figs. 3a and b. In Fig. 2b the two beams have actually crossed and in Fig.
3b many crossings have occurred. As is illustrated in Fig. la, the mapping function
becomes quite steep just prior to the first crossing of the beams. Just after the
crossing, as illustrated in Fig. 2a, short wavelength oscillations develop near the
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FiG. 1. (a) Fourier—-PIC mapping function for one beam at ,t/(2n)=3.6. (b) Fourier-PIC phase-
space plot at w,1/(2n) =3.6.

steep gradient. Further spreading of the oscillations and additional steepening,
illustrated in Fig. 3a, then lead to the complex phase-space plot in Fig. 3b, which is
characterized by multiple crossings of the beams.

When the two beams cross, the Jacobian of the phase-space map from (x’, v') to
(x, v) defined by (7) is no longer constant as required by Liouville’s theorem. In the
Fourier-PIC simulations, as well as with the piecewise linear and PIC simulations,
we always observed a remarkable correlation between the first obvious breakdown
of the Liouville theorem, as indicated by the first crossing or very near crossing of
the beams, and the onset of noise in the simulation. With the Fourier-PIC and
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F1G.2. (a) Fourier-PIC mapping function for one beam at w,#/(2n) =3.8. (b) Fourier-PIC phase-
space plot at w,t/(2n)=338.

piecewise linear schemes, the beams always evolve as continuous curves in the
phase space because the mapping functions are constrained to be continuous
functions of x’. With those schemes, crossing was always observed to occur, no
matter how many harmonics or nodes were used for representing the mapping
functions. With the PIC scheme, each beam is represented by a finite number of dis-
crete particles. After the beams very nearly crossed in PIC simulations, the particles
in the vicinity of the crossing became disordered and the identities of the separate
beams were lost. We denote by . the time at which the beams first cross or very
nearly cross. The value of ¢, was insensitive to the time step &¢ or to the other
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F1G. 3. (a) Fourier-PIC mapping function for one beam at w,/(2n) =5.0. (b) Fourier-PIC phase-
space plot at w,¢/(2n) =5.0.

numerical parameters chosen for computing the mapping function: the number of
Fourier harmonics in a Fourier-PIC simulation, the number of nodes in a
piecewise linear simulation, or the number of particles in a PIC simulation.
However, in all of the simulations, we observed noise after the time 7., but not
before. By this we mean the following. Suppose we have two simulations of the
same problem with the same approximation scheme, but with different numerical
parameters. The values of ¢, for the two simulations will generally be different, but
the simulations will be in good agreement for times earlier than the smaller of the
two values. For later times, there will be significant differences. We call those dif-
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FiG. 4. PIC phase-space plot at w,t/(2n)=3.82.

ferences noise. The onset of noise was clearly evident in graphs of the electric field
energy versus time. We give an example of that in connection with our discussion of
PIC simulations below.

Results of simulations with the piecewise linear scheme were quite similar to the
results with the Fourier-PIC scheme. Using equally spaced nodes, we found that
the beams crossed in the phase space shortly after the peak in the electric field
energy. The onset of noise occurred at approximately the time 7.

Having observed with the Fourier—PIC and piecewise linear simulations that the
onset of noise occurred very near the time 7., we developed the PIC code in order
to confirm this result with another method. As stated earlier, the results with the

ELECTRIC FIELD ENERGY

o] 4.0 8.0
mpt/(21r)

FiG. 5. PIC electric field energy history at w, §t/(2n) = 0.04.
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ELECTRIC FIELD ENERGY

0 4.0 8.0

FiG. 6. PIC electric field energy history at w, 0t/(2n) = 0.02.

PIC code were very similar to the results with the other two schemes. We used two
algorithms for advancing the particles with the PIC method. One was the standard
leapfrog algorithm; the other was a fourth-order Runge-Kutta algorithm. The leap-
frog algorithm is exactly measure-preserving. Therefore, trajectories would never
actually cross in PIC simulations with the leapfrog aigorithm, but they did nearly
cross. With the two algorithms for time advancement with the PIC method, we
studied the dependence of the results on the accuracy with which the particle
equations of motion were integrated. We used values of w, 6¢/(2n) as small as 0.004.
Although the value of 7, did increase as the equations of motion were integrated
more accurately, it was rather insensitive to the accuracy.

In Fig. 4 is a phase-space plot from a PIC simulation at a time comparable to the
Fourier-PIC plot in Fig. 2b. The beams have very nearly corssed. Shortly thereaf-
ter, the particles in the vicinity of the crossings became disordered and the identities
of the beams were lost. In Figs. 5 and 6 are shown the electric field energy as a
function of time from PIC simulations with two different time steps. In Fig. 5 the
value of w,ét/(2n) is 0.04; in Fig. 6 the value is 0.02. The graphs differ markedly
after the time ¢, which occurs shortly after the initial peak in the energy.

Because the onset of noise in our simulations was so strongly correlated with
crossing or near crossing of the beams in the phase space, we believe that the noise
is a result of inaccurate representation of details of the underlying Hamiltonian par-
ticle dynamics.

V. CONCLUSIONS
It would appear that details of the underlying Hamiltonian structure of the par-

ticle dynamics in plasma simulations is important for achieving accurate solutions
of the initial-value problem. In our simulations, after a time when the beams

581/69/2-2
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crossed or nearly crossed, representing a violation of Liouville’s theorem or a
strong sensitivity to initial conditions, the details of a simulation were no longer
precise and the simulation could only be trusted on a statistical basis. In order to
avoid these difficulties it would probably be necessary to find a computational
method that treated certain features of the particle dynamics accurately. Some
recent work in this direction has been carried out by Menyuk [1]. Also, recent
work by Lewis, Leach and Goedert on invariants for time-dependent potentials
may be relevant to this problem [10-12].

The science and art of numerical plasma simulation is a powerful tool in plasma
physics. However, its applicablity would be even greater if a practical com-
putational method were found which reliably reduced the noise in the gross
physical quantities of interest.
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